For Better Performance Please Use Chrome or Firefox Web Browser

Multivariate Statistical Analysis 1

Credit Hours : 2

General Objective:

Students completing this course should understand basic concepts and application of multivariate analysis (Correlation and regression). They are expected to be able to conduct appropriate statistical methods and interpret the results for applications. Examples of programming will be demonstrated for data analyses during lectures.

 

Specific Objectives:

1- A review on basic of statistics and its application in research

2- Simple linear regression and correlation

3- Matrix algebra and random vectors

4- Multivariate linear regression models

5- Non-linear regression

6-General Linear Models (GLM)

 

References

1-Draper, N. R., and H. Smith. 1981. Applied Regression Analysis. John Wiley and Sons. New York, USA

2-Montgomery, D. C. and E. A. Peck. 2007. Introduction to linear Regression Analysis. 5th edition. John Wiley and Sons. Newyork, USA.

3-Johnson, R. A. and D. W. Wichern. 2007. Applied multivariate statistical analysis. Prentice Hall Inter. Inc. New Jersey, USA.

 

Prerequisites: 
Grading Policy: 

Homework (25%)  

Mid-term (25%) 

Final Exam/Projects (50%)

 

Time: 

Tud 08:00 - 10:00

Term: 
2014
Grade: 
Graduate